


Preface vii
Many colleagues and friends in various institutions, not only from our own
study field, have participated in teaching us this lesson, from our parents, families

viii Preface
and some school teachers to our academic teachers, Karl Jung†, Kiel, and Reiner
Rummel, Delft, and to our later colleagues and students. Every one of them has
chosen her/his own way and none is responsible for ours, but the – hopefully –
mutual benefit has been immense. The intellectual challenges by colleagues and
students are gratefully acknowledged. Geological teaching by Eugen Seybold, Kiel,
and exchange with Richard Walcott, Richard Gibb, Alan Goodacre and Imre Nagy
in Canada and with Gerhard M¨uller†, Frankfurt (Main), were important. In Mainz,
Georg B¨uchel, Evariste Sebazungu, Tanya Fedorova, Ina Müller, Chris Moos,
Michaela Bock, Herbert Wallner, Hasan Çavşak, Tanya Smaglichenko and many
others were influential on both of us.
HerbertWallner helped intellectually by many discussions, with calculations and
quite a number of figures. Tanya Fedorova provided some of the gravity inversion
models. Evariste Sebazungu, in his own PhD thesis on potential field inversion,
developed original ideas which entered into this treatise. Hasan Çavşak provided
gravity calculations for various polyhedral bodies and helped discovering errors in
some theoretical derivations. Pierre Keating provided information on some of the
free modelling software. Discussions with Markus Krieger (Terrasys, Hamburg) led
to several ideas and insights into the practical solution of interpretation problems.
All of them and many more contributed thought-provoking ideas and thus influenced
the present treatise. Most importantly, the mutual discussions between the
authors through the whole time of their cooperation were beneficial to both. Finally,
lecturing on gravity (and magnetics) taught us more than anything else to endeavour
to present the ideas clearly.
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2.9.6.2 Massive Polyhedron
Massive polyhedra are flexible approximations to arbitrarily shaped geological 
bodies.
Their treatment somewhat differs from that of polyhedral shells (Sect. 2.9.5.2).
The difference is in the infinitesimal mass elements. The size of the shell mass 
element ρ* ds depends on its orientation relative to the radius vector r, see (Eq. 
2.9.12), and the arguments leading to it. In contrast, the mass element of the massive
polyhedron is the oblique cone or pyramid expanded from ds and P (0, 0, 0); its
volume is generally large relative to the infinitesimal dimensions of its base ds
which, hence, is negligible and independent from the orientation of ds. Therefore
the integration proceeds with mass elements ρdV, where dV is the volume of the
infinitesimally thin cone defined by the solid angle dΩ whose volume grows with

dr as dV = 2r rdr dΩ; dΩ depends on the orientation as dΩ = cosψ ds/r2. If ds is at
a given arbitrary 0r , dV = cosψ dsdr, and the volume of the cone ΔV depends on r



as cosψ 
0r

0ds dr = cosψ ds 0r .

The basic finite polyhedral elements Δ s are the variably oriented right triangles
which, from P, expand massive oblique tetrahedra. For the plane-normal
components, the planar elements are projected, as above, onto the unit sphere at
P to directly render ΔΩ.

In the special case that the direction  E  of the vector effect  Eg  is known,

the components in x, y, z are found by back projection (Fig. 2.9.4):  E
ng =

 E
ng cos ,  E

ng E
hcos / cos  . Generally, the vector or its direction is not

known, and thus also the plane-parallel components must be calculated. The 
procedure is described by that for the polygon (Sects. 2.9.4.2 & 2.9.4.3; Figs. 2.9.7
& 2.9.8; Eqs. 2.9.29, 2.9.30, 2.9.31); integration of the massive oblique pyramid

is reduced to dh h =, because the planar dh elements grow as 2h , compensating

21 r . For each polyhedron triangle the vector is calculated in the local coordinates

(X, Y, Z):  gx gy gzg , ,    and rotated into the global coordinates: gx gy gz, ,  
and added up component wise for the whole polyhedron, with i = 1, 2, 3 for
x, y, z:

i ik
Sk

g g 
Another approach to calculating the gravity effect of a polyhedron(Çavşak 1992)
is first to integrate the disturbing potential effect U of an arbitrarily oriented
pyramid from similar volume elements as used here and then calculating the vertical
derivative zg U z    It requires coordinate transformations. The approach

is facilitated by using vector calculus. Several solutions and algorithms of
gravity integration over uniform polyhedra have been published, at least since the
1960s. Poh´anka (1988) and Holstein and co-workers in a series of papers (Holstein,
2002a,b; Holstein et al., 1999) summarized and compared them with each other,
especially in view of computational precision. Polyhedra are treated with the aim
to unify the calculations of what is called the “gravimagnetic effects” and to make
optimal use of similarities common to all these related potential field problems. The
methods may be distinguished as vertex, line and surface methods. The formulations
are essentially all alike, but the approach is different: abstract, mathematical,
based on the application of Gauss’ and Stokes’ integral theorems. In contrast, it
is here attempted to design tailored mass elements (solid angle and vertical mass

line, both growing with 2r ) in a more visual approach. It encompasses special cases
where mass elements degenerate to zero (on a polyhedron facet, an edge or a 
vertex)
where analytical treatment has problems. Computational aspects are discussed
in Chap. 6.
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Two-dimensionality leads to significant errors of gravity calculation, if the length
over depth ratio is not large. It is therefore advisable to estimate the errors. For this
purpose, one can calculate the end corrections for finite length , i.e. by the factor
a (Eq. 2.9.8) or construct simple 3D models for comparison.

It is tempting to save the simplicity of the 2D modelling by formulations generally
applying end corrections of the 2D models and performing what has been
called 21/2 dimensional modelling. However, while infinite length is never realistic,
the limited lengths are usually difficult to define. The lateral extent of geological
structures is often roughly known or can be inferred from the gravity maps, but it
is generally uncertain what lies beyond the limited body and usually varies in three
dimensions with significant gravity effects. In many cases it is best to immediately
construct 3D models, but these aspects are the topic of Chap. 6.

Remark 2
Çavşak’s (1992) integration of zg  for polyhedra is based on the basic tetrahedra

expanded from P to the arbitrarily oriented plane triangles (corners A, B, C, 
equivalent
to vectors A,B,C) taken as the basic mass elements V . First the potential
 U of the mass element is calculated in a suitable Cartesian coordinate system (X,
Y, Z) before g U z     is derived. X is chosen parallel to the side AB, Z parallel

to AB×BC and Y normal to X and Z, i.e. parallel to the plane ABC. Integration
is then fairly simple, being similar to the solid angle approach. To derive zg requires

a rotational coordinate transformation (2.3.3.1) from (X, Y, Z) back to (x, y,
z), for which we need the matrix of the components of the vector x = (x,y, z) or
xi(i = 1,2,3) in the X = (X,Y,Z) or Xk (k = 1, 2, 3) system; the matrix elements
are cos(xi,Xk) of the angles between all xi,Xk. Since the Xk are defined in (x, y,
z), their x, y, z components cos(xi,Xk) = cos(Xk,xi) are known. Numerical routines
for elementary vector and tensor (or matrix) operations facilitate the calculations.
The potential and gravity effects  U , g  of a polyhedron of triangles are derived

by summing the contributions of all tetrahedra with a proper sign convention. Each
edge separates two triangles and occurs thus twice. The final expression is 
principally
the sum of functions of all corner points, i.e. their x, y, z coordinates, with the
sign depending on the orientation of each triangle or the sign of the scalar product
of r.n, where n is the outward surface normal vector. Details are in the dissertation
by Çavşak (1992).
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5.7.9 Mantle Convection
Mantle flow is largely hidden below the lithospheric plates which together are an 
integral convecting system. Effects in the gravity field are expected from related 
temperature and, hence, density variations. The relation between plates, deeper 
mantle flow and gravity is, however, not simple, as is evident in comparisons of the 
plate geometry and the global gravity field (see Sect. 1.5.4, 1.5.5; National Academy 
Press, 1997). Expansion in spherical harmonics of gravity and plate geometry 
suggests some correlation in harmonic degrees and orders 4 and 5 (Schubert et al., 
2001), but the largest amplitudes are of degrees 2 and 3 which probably do not 
directly reflect plate-related flow. Low degree spherical harmonic components would 
certainly suggest mantle wide anomalies, but shallower anomalies of broad lateral 
extent are not excluded. Seismic tomography must be taken into account in view of 
velocitytemperature- density relations. A qualitatively important aspect is the Earth’s 
tendency to orientate its axis of largest inertia parallel to its axis or rotation (Goldreich
& Toomre, 1969) and this would tend to place the equator where convection 
upwellings predominate, thus hinting at a significant component of the flow pattern.
Some component of gravity may, nevertheless, be more directly related to the
moving plates, for example, through the continuity condition which requires the
plate motion to be linked with flow. Respective data are difficult to isolate from
the global gravity field which is an integral of all masses of Earth. Stacking gravity
profiles along plate motion trajectories toward the trenches may enhance such
a signal while suppressing other components. Examples are shown in Fig. 5.7.9a
(after Seidler et al., 1983) where the FA is plotted along the trajectories of plate
motion relative to the hotspot frame of reference versus distance (coordinate XB
in degree) from the trailing edge (XB = 0) to the leading edge; the figure shows



Fig. 5.7.9 Mantle convection. (a) FA plotted along trajectories of plate motion in hotspot frame
of reference versus distance XB (in degree) from trailing edge (XB = 0) to the leading edge; FA
averaged for XB = const (across the trajectories) shown as a bar, standard deviation shown in
grey. Plates PAC, SAM, IND, EUR move from divergent to convergent boundaries. (b) Numerical
model of convection in Cartesian box (Rayleigh number Ra = 106 with temperature dominated p,
T-dependent viscosity (Ritzert & Jacoby, 1992); boxes show calculated elevation H (below water),
flow lines as stream function contours Ψ; the FA gravity anomaly Δ g; the temperature field T;
horizontally averaged viscosity as log η. (scales are dimensionless; note especially the relative
variation of H and Δ g)

the averages for XB = const across the trajectories. The plates PAC, SAM, IND,
EUR have in common the movement from divergent to convergent boundaries. They
show a consistent trend of slight to distinct FA increase toward both ends, trailing



(divergent) and leading (convergent, i.e. subducting or overriding a subducting
plate). Since the analysis smears out the effects, their amplitudes will appear 
subdued

and the widths enhanced (divergence: ∼10 10mGal, 0 015 5 width; convergence:

20 >10mGal, 0 030 5 width). Stacking of profiles across the spreading
ridges in the Atlantic, Indic and Pacific render mean topographic highs of 1.0 to
1.6 km, mean FA highs of 6 to 14 mGal and mean BA lows of −80 to −130mGal,
relative to the adjacent basins (Jacoby & Çavşak, 2005). Stacking and averaging
does not fully suppress other independent effects; compare, for example, the 
plumeaffected Reykjanes Ridge (Sect. 5.7.6) with FA rising to +60mGal and BA only
−60 to −80mGal. In the gravity disturbance (see Sect. 4.3) the positive effect is
enhanced relative to the FA by the height reduction from the geoid to the ellipsoid
(N∂ gn/∂ h×(−1) ≈ +0.3086N [m]), as the geoid above upwelling flow (plume,
ridge) is positively disturbed; this effect is somewhat lessened by the corresponding
geoidal Bouguer reduction (see Sect. 4.5.3.1). In the BA the Bouguer reduction 
removes the effect of only the displaced surface not that of similarly displaced 
internal density contrast surfaces (e.g. Moho).
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6.2.1.2 Indirect Interpretation Methods with Few Large 2D Bodies
Indirect interpretation by trial and error model adjustment can be realized with any
of the above parametrizations. The geometrical model description should be flexible
without requiring a very large number of parameters. Rectangular cross sections
may be useful in some cases. The classical method is based on the polygonal 
section or the “Talwani method”. It permits an efficient description, and change, of 
arbitrary shapes by relatively few parameters (corner coordinates). “Thin” horizontal 
layers, also vertical or oblique “dykes” and “thick” rectangular cross sections provide 
practical approximations to 2D bodies. The undulated density contrast surface is well
suited for the trial and error approach.

(1) The expressions for numerical evaluation of the effects of 2D oblique steps
and polygons (“Talwani method”) are Eqs. (2.9.61, 2.9.64 and 2.9.65). They contain
angles and distances which generally must be calculated from coordinates (xi, zi) of
observation points Pi(i = 1 to n) and (xk, zk) of corner points k (k = 1 to m; where
the last point k =m is identical to the first point k =1). Tests should always be made



before “imported” routines are used for “production runs”.
A specific polygon is assigned its constant density contrast Δρ (Sect. 6.1.5.1
and Fig. 6.1.1). The corner points are read in sequence, usually clockwise along the
polygon; programming then takes care of the calculated effects δ g to be positive
if Δρ is positive and P essentially lies above the main part of the body. Changing
the direction to anticlockwise, changes the sign of the effects. Complex models are
built of several bodies which may be apart from each other, in contact or overlapping
(see Fig. 6.1.1). Nesting or multiple wrapping (Fig. 6.1.1d) is an easy way to
realize small stepwise or nearly continuous density variations, and an example is
the calculation of the thermal expansivity, for example, of the cooling lithosphere at
spreading ocean ridges (Jacoby & Çavşak, 2005).
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6.3.1.2 Indirect Interpretation Methods with Few Large 3D Bodies
Indirect interpretation by trial and error cannot be standardized for the determination
of depth, shape and density of 3D mass anomalies. The analytical expressions
for the foreward calculations are presented in Sect. 2.9.6. For some purposes, 
graphical methods with templates were used before the advent of efficient computers 
(see Sect. 6.1.4). Methodological possibilities are briefly sketched here. The most 
flexible parametrizations, suitable for analytical and numerical evaluation and 
approximation of arbitrary shapes are probably the polyhedra (Sect. 2.9.6.2) and 
stacks of horizontal polygonal discs (Sect. 2.9.4.2) by which given contour lines can 
be exploited; for special cases, as “thin dykes” of laterally limited extent, equations
for planar elements (Sects. 2.9.3.3 & 2.9.3.4) can be derived by coordinate rotation
(Sect. 2.4.3.1). Cuboids and other regular (Sect. 2.9.6.1) bodies are less flexible to
fit realistic 3D shapes. Cylinders or cones can be taken for crater-like bodies.

(1) Massive polyhedra (Sect. 2.9.6.2) with arbitrary complexity are generally 
applicable. One way is to first derive a set of vertical polygonal sections of anomalous
masses from geology or geophysical models. Then triangulation can connect the
sections. The gravity effects are finally calculated with expressions given by several
authors (IGMAS: Götze & Lahmeyer, 1988; Çavşak, 1992; Holstein et al., 1999,
Holstein, 2002a, b). Such methods permit a highly detailed description of 3D shapes,
but they require large numbers of geometrical parameters (coordinates) and the 
sensitivity of the gravity effects to details and changes in detail may be low. 
Furthermore, detailed parametrization leads to the numerical evaluation of very 
many, very small contributions to the total gravity effect of a polyhedron, such that 
rounding errors may become a problem (see Holstein et al., 1999). Large numbers of 
parameters restrict the possibilities of formal inversion (Chap. 7).
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6.5.6 Spreading Ridges
Before the advent of seafloor spreading, ocean ridges were considered submarine
mountain belts with crustal roots, but then it was realized that hot, low-density material
rises diapir-like and explains the ridge topography (Jacoby, 1970). In Sect. 5.7.6,



a qualitative estimate for Reykjanes Ridge of a density anomaly of –30kg/m3 for an
assumed 100m depth extent was interpreted with a temperature anomaly of about
+300K. Quantitative gravity modelling (2D: Sect. 6.2.1.2 (1)) has to take into account
additional a priori information, mainly data on bathymetry and from seismic
studies of crustal structure which shows the Moho to rise towards the ridge
axes, instead of dipping with a thickening root. The Reykjanes Ridge was investigated
by many workers (see Jacoby et al., 2007, and references quoted there). Here
an interpretation of gravity across two ridges is reproduced: the rather slow Mid
Atlantic Ridge (MAR: Fig. 6.5.6a), and the fast spreading East Pacific Rise (EPR:
Fig. 6.5.6b). The 2D model of a triangular-shaped low-density body of hot rising
asthenospheric mantle material from under the diverging cooling and thickening
plates was adopted and adjusted by trial and error (Jacoby, 1978, where the available
a priori information is quoted). Again, 2D is well justified, although the structures
reach more than 50 km depth. Fitted was a modified BA reduced for crustal
structure, i.e. crust was, so to speak, first “filled up” to mantle density by calculation
(Sect. 4.5.3.1). The resulting gravity anomaly should essentially reflect the effect of
the asthenospheric wedge.
The shape of the asthenosphere wedge is taken as an equivalent to the density
distribution inherent in the isotherms of cooling plates, which should be quite similar
in both ridges if normalized to a common spreading rate. It is the physically
correct temperature model (McKenzie, 1977, but the asthenospheric wedges is a
suitable equivalent. For the MAR with a wedge of 60 km height Δρ was found

Fig. 6.5.5 The SE Iceland shelf, compare Fig. 5.7.5. Four different model types portraying different
geological processes which might have formed the shelf. (1) Non-isostatic edge fitted to the
residual Bouguer anomaly, rBA; Moho and water body shown for comparison; (2) fit of BA: glacial
abrasion causing uplift and enhanced average crustal density, coupled with sediments at the foot of
the shelf slope; (3) fit of rBA: dense upper crust due to increased volcanism and forward building
of shelf, coupled with light slope sediments; (4) fit of rBA: fully non-isostatic edge bending or
rotation, uplifting the outer shelf and depressing the slope (see text)

Fig. 6.5.6 Crust-upper mantle sections of spreading ridges, (a) Mid Atlantic Ridge (MAR), (b)
East Pacific Rise (EPR); the sections are based on crustal seismic information (in boxes: seismic
P velocities in km/s) and on the concept of thickening lithosphere and rising asthenosphere (after
Jacoby, 1975)



to be about –120 kg/m3; this is a high value which, for a height of 100 km, would
be reduced to about –70kg/m3, still exceeding estimates for the Reykjanes Ridge.
For the EPR a much lower density contrast of –50kg/m3 for the central wedge
with, however, only 30 km height was obtained (only –15kg/m3 if the height were
100 km).
The discrepancies between the preliminary estimate of Chap. 5 and the present
models reflect the limitations of rough estimates, but the differences between the
ridges seem substantial enough to be significant. The MAR and EPR are different,
for example, in divergence rate, plume occurrence and dynamics. The slow 
spreading Atlantic is characterized by many near-ridge plumes that inject hot and 
possibly volatile-rich material into the asthenosphere, thus enhancing the melting and
the density deficit, while the fast spreading Pacific is also driven by slab pull such
that the asthenospheric upwelling might lag behind. The physically more adequate
model of the lateral cooling density anomalies (anomalous isotherms; McKenzie,
1977) is treated by Jacoby & Çavşak, (2005).
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2.9.6.2 Massive Polyhedron


Massive polyhedra are flexible approximations to arbitrarily shaped geological bodies.


Their treatment somewhat differs from that of polyhedral shells (Sect. 2.9.5.2).


The difference is in the infinitesimal mass elements. The size of the shell mass element ρ* ds depends on its orientation relative to the radius vector r, see (Eq. 2.9.12), and the arguments leading to it. In contrast, the mass element of the massive
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The basic finite polyhedral elements Δ s are the variably oriented right triangles


which, from P, expand massive oblique tetrahedra. For the plane-normal


components, the planar elements are projected, as above, onto the unit sphere at


P to directly render ΔΩ.
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the components in x, y, z are found by back projection (Fig. 2.9.4): 

[image: image8.wmf](


)


E


n


g


¶


=



[image: image9.wmf](


)


E


n


gcos


y


¶


, 

[image: image10.wmf](


)


E


n


g


¶




 EMBED Equation.DSMT4  [image: image11.wmf]E


h


cos/cos


yy


. Generally, the vector or its direction is not known, and thus also the plane-parallel components must be calculated. The procedure is described by that for the polygon (Sects. 2.9.4.2 & 2.9.4.3; Figs. 2.9.7


& 2.9.8; Eqs. 2.9.29, 2.9.30, 2.9.31); integration of the massive oblique pyramid


is reduced to 

[image: image12.wmf]dhh


=


ò


=, because the planar dh elements grow as

[image: image13.wmf]2


h


, compensating




[image: image14.wmf]2


1r


. For each polyhedron triangle the vector is calculated in the local coordinates


(X, Y, Z): 

[image: image15.wmf](


)


gxgygz


g,,


dddd


=


 and rotated into the global coordinates: 

[image: image16.wmf]gxgygz


,,


ddd


 and added up component wise for the whole polyhedron, with i = 1, 2, 3 for


x, y, z:



[image: image17.wmf]iik


Sk


gg


dd


=


å




Another approach to calculating the gravity effect of a polyhedron(Çavşak 1992)

is first to integrate the disturbing potential effect (U of an arbitrarily oriented
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Two-dimensionality leads to significant errors of gravity calculation, if the length


over depth ratio is not large. It is therefore advisable to estimate the errors. For this


purpose, one can calculate the end corrections for finite length
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edge separates two triangles and occurs thus twice. The final expression is principally


the sum of functions of all corner points, i.e. their x, y, z coordinates, with the


sign depending on the orientation of each triangle or the sign of the scalar product


of r.n, where n is the outward surface normal vector. Details are in the dissertation


by Çavşak (1992).
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5.7.9 Mantle Convection


Mantle flow is largely hidden below the lithospheric plates which together are an integral convecting system. Effects in the gravity field are expected from related temperature and, hence, density variations. The relation between plates, deeper mantle flow and gravity is, however, not simple, as is evident in comparisons of the plate geometry and the global gravity field (see Sect. 1.5.4, 1.5.5; National Academy Press, 1997). Expansion in spherical harmonics of gravity and plate geometry suggests some correlation in harmonic degrees and orders 4 and 5 (Schubert et al., 2001), but the largest amplitudes are of degrees 2 and 3 which probably do not directly reflect plate-related flow. Low degree spherical harmonic components would certainly suggest mantle wide anomalies, but shallower anomalies of broad lateral extent are not excluded. Seismic tomography must be taken into account in view of velocitytemperature- density relations. A qualitatively important aspect is the Earth’s tendency to orientate its axis of largest inertia parallel to its axis or rotation (Goldreich


& Toomre, 1969) and this would tend to place the equator where convection upwellings predominate, thus hinting at a significant component of the flow pattern.


Some component of gravity may, nevertheless, be more directly related to the


moving plates, for example, through the continuity condition which requires the


plate motion to be linked with flow. Respective data are difficult to isolate from


the global gravity field which is an integral of all masses of Earth. Stacking gravity


profiles along plate motion trajectories toward the trenches may enhance such


a signal while suppressing other components. Examples are shown in Fig. 5.7.9a


(after Seidler et al., 1983) where the FA is plotted along the trajectories of plate


motion relative to the hotspot frame of reference versus distance (coordinate XB


in degree) from the trailing edge (XB = 0) to the leading edge; the figure shows

[image: image28.emf]
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Fig. 5.7.9 Mantle convection. (a) FA plotted along trajectories of plate motion in hotspot frame


of reference versus distance XB (in degree) from trailing edge (XB = 0) to the leading edge; FA


averaged for XB = const (across the trajectories) shown as a bar, standard deviation shown in


grey. Plates PAC, SAM, IND, EUR move from divergent to convergent boundaries. (b) Numerical


model of convection in Cartesian box (Rayleigh number Ra = 106 with temperature dominated p,


T-dependent viscosity (Ritzert & Jacoby, 1992); boxes show calculated elevation H (below water),


flow lines as stream function contours Ψ; the FA gravity anomaly Δ g; the temperature field T;


horizontally averaged viscosity as log η. (scales are dimensionless; note especially the relative


variation of H and Δ g)


the averages for XB = const across the trajectories. The plates PAC, SAM, IND,


EUR have in common the movement from divergent to convergent boundaries. They


show a consistent trend of slight to distinct FA increase toward both ends, trailing


(divergent) and leading (convergent, i.e. subducting or overriding a subducting


plate). Since the analysis smears out the effects, their amplitudes will appear subdued


and the widths enhanced (divergence: ∼10
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width). Stacking of profiles across the spreading


ridges in the Atlantic, Indic and Pacific render mean topographic highs of 1.0 to


1.6 km, mean FA highs of 6 to 14 mGal and mean BA lows of −80 to −130mGal,


relative to the adjacent basins (Jacoby & Çavşak, 2005). Stacking and averaging


does not fully suppress other independent effects; compare, for example, the plumeaffected Reykjanes Ridge (Sect. 5.7.6) with FA rising to +60mGal and BA only


−60 to −80mGal. In the gravity disturbance (see Sect. 4.3) the positive effect is


enhanced relative to the FA by the height reduction from the geoid to the ellipsoid


(N∂ gn/∂ h×(−1) ≈ +0.3086N [m]), as the geoid above upwelling flow (plume,


ridge) is positively disturbed; this effect is somewhat lessened by the corresponding


geoidal Bouguer reduction (see Sect. 4.5.3.1). In the BA the Bouguer reduction removes the effect of only the displaced surface not that of similarly displaced internal density contrast surfaces (e.g. Moho).
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6.2.1.2 Indirect Interpretation Methods with Few Large 2D Bodies


Indirect interpretation by trial and error model adjustment can be realized with any


of the above parametrizations. The geometrical model description should be flexible


without requiring a very large number of parameters. Rectangular cross sections


may be useful in some cases. The classical method is based on the polygonal section or the “Talwani method”. It permits an efficient description, and change, of arbitrary shapes by relatively few parameters (corner coordinates). “Thin” horizontal layers, also vertical or oblique “dykes” and “thick” rectangular cross sections provide practical approximations to 2D bodies. The undulated density contrast surface is well


suited for the trial and error approach.


(1) The expressions for numerical evaluation of the effects of 2D oblique steps


and polygons (“Talwani method”) are Eqs. (2.9.61, 2.9.64 and 2.9.65). They contain


angles and distances which generally must be calculated from coordinates (xi, zi) of


observation points Pi(i = 1 to n) and (xk, zk) of corner points k (k = 1 to m; where


the last point k =m is identical to the first point k =1). Tests should always be made


before “imported” routines are used for “production runs”.


A specific polygon is assigned its constant density contrast Δρ (Sect. 6.1.5.1


and Fig. 6.1.1). The corner points are read in sequence, usually clockwise along the


polygon; programming then takes care of the calculated effects δ g to be positive


if Δρ is positive and P essentially lies above the main part of the body. Changing


the direction to anticlockwise, changes the sign of the effects. Complex models are


built of several bodies which may be apart from each other, in contact or overlapping


(see Fig. 6.1.1). Nesting or multiple wrapping (Fig. 6.1.1d) is an easy way to


realize small stepwise or nearly continuous density variations, and an example is


the calculation of the thermal expansivity, for example, of the cooling lithosphere at


spreading ocean ridges (Jacoby & Çavşak, 2005).
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6.3.1.2 Indirect Interpretation Methods with Few Large 3D Bodies


Indirect interpretation by trial and error cannot be standardized for the determination


of depth, shape and density of 3D mass anomalies. The analytical expressions


for the foreward calculations are presented in Sect. 2.9.6. For some purposes, graphical methods with templates were used before the advent of efficient computers (see Sect. 6.1.4). Methodological possibilities are briefly sketched here. The most flexible parametrizations, suitable for analytical and numerical evaluation and approximation of arbitrary shapes are probably the polyhedra (Sect. 2.9.6.2) and stacks of horizontal polygonal discs (Sect. 2.9.4.2) by which given contour lines can be exploited; for special cases, as “thin dykes” of laterally limited extent, equations


for planar elements (Sects. 2.9.3.3 & 2.9.3.4) can be derived by coordinate rotation


(Sect. 2.4.3.1). Cuboids and other regular (Sect. 2.9.6.1) bodies are less flexible to


fit realistic 3D shapes. Cylinders or cones can be taken for crater-like bodies.


(1) Massive polyhedra (Sect. 2.9.6.2) with arbitrary complexity are generally applicable. One way is to first derive a set of vertical polygonal sections of anomalous


masses from geology or geophysical models. Then triangulation can connect the


sections. The gravity effects are finally calculated with expressions given by several


authors (IGMAS: Götze & Lahmeyer, 1988; Çavşak, 1992; Holstein et al., 1999,


Holstein, 2002a, b). Such methods permit a highly detailed description of 3D shapes,


but they require large numbers of geometrical parameters (coordinates) and the sensitivity of the gravity effects to details and changes in detail may be low. Furthermore, detailed parametrization leads to the numerical evaluation of very many, very small contributions to the total gravity effect of a polyhedron, such that rounding errors may become a problem (see Holstein et al., 1999). Large numbers of parameters restrict the possibilities of formal inversion (Chap. 7).
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6.5.6 Spreading Ridges


Before the advent of seafloor spreading, ocean ridges were considered submarine


mountain belts with crustal roots, but then it was realized that hot, low-density material


rises diapir-like and explains the ridge topography (Jacoby, 1970). In Sect. 5.7.6,


a qualitative estimate for Reykjanes Ridge of a density anomaly of –30kg/m3 for an


assumed 100m depth extent was interpreted with a temperature anomaly of about


+300K. Quantitative gravity modelling (2D: Sect. 6.2.1.2 (1)) has to take into account


additional a priori information, mainly data on bathymetry and from seismic


studies of crustal structure which shows the Moho to rise towards the ridge


axes, instead of dipping with a thickening root. The Reykjanes Ridge was investigated


by many workers (see Jacoby et al., 2007, and references quoted there). Here


an interpretation of gravity across two ridges is reproduced: the rather slow Mid


Atlantic Ridge (MAR: Fig. 6.5.6a), and the fast spreading East Pacific Rise (EPR:


Fig. 6.5.6b). The 2D model of a triangular-shaped low-density body of hot rising


asthenospheric mantle material from under the diverging cooling and thickening


plates was adopted and adjusted by trial and error (Jacoby, 1978, where the available


a priori information is quoted). Again, 2D is well justified, although the structures


reach more than 50 km depth. Fitted was a modified BA reduced for crustal


structure, i.e. crust was, so to speak, first “filled up” to mantle density by calculation


(Sect. 4.5.3.1). The resulting gravity anomaly should essentially reflect the effect of


the asthenospheric wedge.


The shape of the asthenosphere wedge is taken as an equivalent to the density


distribution inherent in the isotherms of cooling plates, which should be quite similar


in both ridges if normalized to a common spreading rate. It is the physically


correct temperature model (McKenzie, 1977, but the asthenospheric wedges is a


suitable equivalent. For the MAR with a wedge of 60 km height Δρ was found


Fig. 6.5.5 The SE Iceland shelf, compare Fig. 5.7.5. Four different model types portraying different


geological processes which might have formed the shelf. (1) Non-isostatic edge fitted to the


residual Bouguer anomaly, rBA; Moho and water body shown for comparison; (2) fit of BA: glacial


abrasion causing uplift and enhanced average crustal density, coupled with sediments at the foot of


the shelf slope; (3) fit of rBA: dense upper crust due to increased volcanism and forward building


of shelf, coupled with light slope sediments; (4) fit of rBA: fully non-isostatic edge bending or


rotation, uplifting the outer shelf and depressing the slope (see text)


[image: image34.emf]

Fig. 6.5.6 Crust-upper mantle sections of spreading ridges, (a) Mid Atlantic Ridge (MAR), (b)


East Pacific Rise (EPR); the sections are based on crustal seismic information (in boxes: seismic


P velocities in km/s) and on the concept of thickening lithosphere and rising asthenosphere (after


Jacoby, 1975)


to be about –120 kg/m3; this is a high value which, for a height of 100 km, would


be reduced to about –70kg/m3, still exceeding estimates for the Reykjanes Ridge.


For the EPR a much lower density contrast of –50kg/m3 for the central wedge


with, however, only 30 km height was obtained (only –15kg/m3 if the height were


100 km).


The discrepancies between the preliminary estimate of Chap. 5 and the present


models reflect the limitations of rough estimates, but the differences between the


ridges seem substantial enough to be significant. The MAR and EPR are different,


for example, in divergence rate, plume occurrence and dynamics. The slow spreading Atlantic is characterized by many near-ridge plumes that inject hot and possibly volatile-rich material into the asthenosphere, thus enhancing the melting and


the density deficit, while the fast spreading Pacific is also driven by slab pull such


that the asthenospheric upwelling might lag behind. The physically more adequate


model of the lateral cooling density anomalies (anomalous isotherms; McKenzie,


1977) is treated by Jacoby & Çavşak, (2005).
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